Model files / 3-D

3-D H-formulation for superconducting wires and the Gmsh cohomology solver

This model was shared by C. Geuzaine, University of Liège.

Read More

3D COMSOL model for CORC cables

This model was shared by Sofia Viarengo, Politecnico di Torino. The model is a full 3D CORC cable: the T-A formulation has been coupled to a thermal module. The model is time-dependent and calculates current density, field distribution, and temperature in the superconductor in presenc …

Read More

Fully-staggered array of bulk REBCO short-period undulator: large-scale 3-D electromagnetic modelling and design optimization using A-V and H- formulations

This model was shared by Kai Zhang, Paul Scherrer Institute, Switzerland and Mark Ainslie, University of Cambridge, UK. In this shared model, implemented in ANSYS 2020R1 Academic, the theory of the 2D A-V formulation-based backward computation method is extended to calculate the criti …

Read More

COMSOL implementation of the H-ϕ formulation with thin cuts for modeling superconductors with transport currents

These models were shared by Alexandre Arsenault, Polytechnique Montréal, Montréal. These two models use thin cuts with the H-phi formulation in COMSOL Multiphysics 5.5 to efficiently model transport currents in superconducting materials. The magnetic scalar potential is set to be disc …

Read More

Modeling of HTS bulks surrounded by magnetic components using the H–φ formulation

These models were shared by Alexandre Arsenault, Polytechnique Montréal, Montréal. These two models use the reduced H-phi formulation to efficiently simulate the magnetic field of a superconducting bulk surrounded by magnetic components. The magnetic field is separated into a source a …

Read More

A-V formulation for numerical modelling of superconductor magnetization in true 3-D geometry

This model was shared by Mykola Soloviov, Institute of Electrical Engineering, Slovak Academy of Sciences. Model file of superconducting cup magnetization in the diagonally oriented external AC magnetic field. The model was saved in the Comsol v. 5.4 without generated mesh and solutio …

Read More

H-ϕ formulation in COMSOL Multiphysics for simulating the magnetization of bulk superconductors and comparison with the H-formulation

These models use the H-phi formulation to efficiently calculate the magnetic field produced by a superconducting bulk magnetized by zero field cooling in a uniform magnetic field. The models are created in COMSOL Multiphysics 4.3b and COMSOL Multiphysics 5.5 in order to be more access …

Read More

MATLAB scripts for simulation of superconductors (tapes, bars and cylinders)

Scripts for Matlab to simulate superconducting strips, bars and cylinders in various conditions of applied magnetic fields and currents. To find the current distribution, an integral formulation known as Brandt’s method is used.

Read More

3-D numerical simulation with the fast Fourier transform of a magnetic shield and a magnetic lens made of a bulk type II superconductor

The method is efficient and can be easier to implement than the alternative approaches based on the finite element methods.

Read More

Modeling and simulation of termination resistances in superconducting cables

The models presented here are used to simulate termination resistances which are largely responsible for the uneven distribution of currents in superconducting cables [1]. For this purpose, four different models are presented. The first is a 0D stationary model, where time enters as a …

Read More

Receive email notification when a new Model File is published